UNIDAD N° 4 - ENERGÍA ELÉCTRICA

La Energía Eléctrica :
Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos —cuando se les coloca en contacto por medio de un conductor eléctrico—para obtener trabajo. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía luminosa o luz, la energía mecánica y la energía térmica.
Su uso es una de las bases de la tecnología utilizada por el ser humano en la actualidad.
La energía eléctrica se manifiesta como corriente eléctrica, es decir, como el movimiento de cargas eléctricas negativas, o electrones, a través de un cable conductor metálico como consecuencia de la diferencia de potencial que un generador esté aplicando en sus extremos.

Los circuitos eléctricos : 
Un circuito eléctrico es una red eléctrica de componentes, tales como resistencias, inductores, capacitores, fuentes, y semiconductores que tienen una trayectoria cerrada, y que a su vez, su corriente regresa al punto de origen.

Tensión o Voltaje : 
La tensión, voltaje o diferencia de potencial es una magnitud física que impulsa a los electrones a lo largo de un conductor en un circuito eléctrico cerrado, provocando el flujo de una corriente eléctrica. La diferencia de potencial también se define como el trabajo por unidad de carga ejercido por el campo eléctrico, sobre una partícula cargada, para moverla de un lugar a otro. Se puede medir con un voltímetro.[1]
En el Sistema Internacional de Unidades, la diferencia de potencial se mide en voltios ( V ), al igual que el potencial.
La tensión es independiente del camino recorrido por la carga, y depende exclusivamente del potencial eléctrico de los puntos A y B en el campo.
Si dos puntos que tienen una diferencia de potencial se unen mediante un conductor, se producirá un flujo de electrones. Parte de la carga que crea el punto de mayor potencial se trasladará a través del conductor al punto de menor potencial y, en ausencia de una fuente externa (generador), esta corriente cesará cuando ambos puntos igualen su potencial eléctrico (ley de Henry). Este traslado de cargas es lo que se conoce como corriente eléctrica.

Polaridad :
Cuando por dos puntos de un circuito puede circular una corriente eléctrica, la polaridad de la caída de tensión viene determinada por la dirección convencional de la misma; esto es, del punto de mayor potencial al de menor. Por lo tanto, si por el resistor R  circula una corriente de intensidad I, desde el punto A hacia el B, se producirá una caída de tensión en la misma con la polaridad indicada, y se dice que el punto A es más positivo que el B.

Corriente Eléctrica :
La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se debe a un movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C·s-1 (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, lo que se aprovecha en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

Conducción eléctrica :
Un material conductor posee gran cantidad de electrones libres, por lo que es posible el paso de la electricidad a través del mismo. Los electrones libres, aunque existen en el material, no se puede decir que pertenezcan a algún átomo determinado.
Una corriente de electricidad existe en un lugar cuando una carga neta se transporta desde ese lugar a otro en dicha región.

Resistencia Eléctrica :
La resistencia eléctrica, simbolizada habitualmente como R, es la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, la resistencia se mide en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
El valor de las resistencias se puede identificar por un código de colores donde la primera línea es la primera cifra, la segunda es la segunda cifra, la tercera es un multiplicador y, finalmente, la cuarta línea de la tolerancia.

La Ley de Ohm :

La Ley de Ohm establece que «la intensidad I de la corriente eléctrica que circula por un conductor eléctrico es directamente proporcional a la diferencia de potencial V aplicada e inversamente proporcional a la resistencia R del mismo», se puede expresar matemáticamente en la siguiente ecuación:

 I= \frac{V}{R}
donde, empleando unidades del Sistema internacional, tenemos que:

  • I = Intensidad en amperios (A)
  • V = Diferencia de potencial en voltios (V) ó (U)
  • R = Resistencia en ohmios (Ω).
Esta ley no se cumple, por ejemplo, cuando la resistencia del conductor varía con la temperatura, y la temperatura del conductor depende de la intensidad de corriente y el tiempo que esté circulando.
La ley define una propiedad específica de ciertos materiales por la que se cumple la relación:

 V= I \cdot R \,
Un conductor cumple la Ley de Ohm sólo si su curva V-I es lineal, esto es si R es independiente de V y de I.

Potencia Eléctrica :
La potencia eléctrica es la relación de transferencia de energía por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado (p = dW / dt). La unidad en el Sistema Internacional de Unidades es el Vatio, o que es lo mismo, Watt.
Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánicamente o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las celulas fotoeléctricas. Por último, se puede almacenar químicamente en baterías.

Potencia en Corriente Continua :    P = V . I   (voltaje x intensidad)



Motor eléctrico
Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.

Son ampliamente utilizados en instalaciones industriales, comerciales y particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.

Principio de funcionamiento


Los motores de corriente alterna y los de corriente continua se basan en el mismo principio de funcionamiento, el cual establece que si un conductor por el que circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético.



El conductor tiende a funcionar como un electroimán debido a la corriente eléctrica que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estator, el movimiento circular que se observa en el rotor del motor.



Partiendo del hecho de que cuando pasa corriente por un conductor produce un campo magnético, además si lo ponemos dentro de la acción de un campo magnético potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energía es comunicada al exterior mediante un dispositivo llamado flecha.


 


  Generador eléctrico


Generador en la central eléctrica de Bridal veil Falls, Telluride, Colorado. Se trataría del generador más antiguo que se mantiene en servicio (año 2007) en EEUU.Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrico entre dos de sus puntos, llamados polos, terminales o bornes. Los generadores eléctricos son máquinas destinadas a transformar la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estátor). Si mecánicamente se produce un movimiento relativo entre los conductores y el campo, se generará una fuerza electromotriz (F.E.M.). Están basados en la ley de Faraday.


Generador eléctrico de una fase que genera una corriente eléctrica alterna (cambia periódicamente de sentido), haciendo girar un imán permanente cerca de una bobina.Un generador es una máquina eléctrica que realiza el proceso inverso que un motor eléctrico, el cual transforma la energía eléctrica en energía mecánica. Aunque la corriente generada es corriente alterna, puede ser rectificada para obtener una corriente continua. En el diagrama adjunto se observa la corriente inducida en un generador simple de una sola fase. La mayoría de los generadores de corriente alterna son de tres fases.

 


 




 

El Transformador Elèctrico.

Transformador de tres fases.Se denomina transformador o trafo(abreviatura) a una máquina eléctrica que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.



El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto de nivel de voltaje, en energía alterna de otro nivel de voltaje, por medio de la acción de un campo magnético. Está constituido por dos o más bobinas de alambre, aisladas entre sí eléctricamente por lo general arrolladas alrededor de un mismo núcleo de material ferromagnético. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo.



Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

 
 
 
- Volver al Menú Anterior